Parallel Monte Carlo Algorithms for Sparse SLAE Using MPI

نویسندگان

  • Vassil N. Alexandrov
  • Aneta Karaivanova
چکیده

The problem of solving sparse Systems of Linear Algebraic Equations (SLAE) by parallel Monte Carlo numerical methods is considered. The almost optimal Monte Carlo algorithms are presented. In case when a copy of the non-zero matrix elements is sent to each processor the execution time for solving SLAE by Monte Carlo on p processors is bounded by O(nNdT/p) where N is the number of chains, T is the length of the chain in the stochastic process, which are independent of matrix size n, and d is the average number of non-zero elements in the row. Finding a component of the solution vector requires O(NdT/p) time on p processors, which is independent of the matrix size n.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coarse Grained Parallel Monte Carlo Algorithms for Solving SLAE Using PVM

The problem of solving System of Linear Algebraic Equations (SLAE) by parallel Monte Carlo numerical methods is considered. Three Monte Carlo algorithms are presented. In case when copy of the matrix is sent to each processor the execution time for solving SLAE by Monte Carlo on p processors is bounded by O(nNT/p) (excluding the initial loading of the data) where N is the number of chains and T...

متن کامل

Parallel Hybrid Monte Carlo Algorithms for Matrix Computations

In this paper we consider hybrid (fast stochastic approximation and deterministic refinement) algorithms for Matrix Inversion (MI) and Solving Systems of Linear Equations (SLAE). Monte Carlo methods are used for the stochastic approximation, since it is known that they are very efficient in finding a quick rough approximation of the element or a row of the inverse matrix or finding a component ...

متن کامل

Implementation of Monte Carlo Algorithms for Eigenvalue Problem Using MPI

The problem of evaluating the dominant eigenvalue of real matrices using Monte Carlo numerical methods is considered. Three almost optimal Monte Carlo algorithms are presented: – Direct Monte Carlo algorithm (DMC) for calculating the largest eigenvalue of a matrix A. The algorithm uses iterations with the given matrix. – Resolvent Monte Carlo algorithm (RMC) for calculating the smallest or the ...

متن کامل

Parallel resolvent Monte Carlo algorithms for linear algebra problems

In this paper we consider Monte Carlo (MC) algorithms based on the use of the resolvent matrix for solving linear algebraic problems. Estimates for the speedup and efficiency of the algorithms are presented. Some numerical examples performed on cluster of workstations using MPI are given.

متن کامل

A Parallel Quasi-Monte Carlo Approach to Pricing American Options on Multiple Assets

In this paper, we develop parallel algorithms for pricing American options on multiple assets. Our parallel methods are based on the low discrepancy (LD) mesh method which combines the quasi-Monte Carlo technique with the stochastic mesh method. We present two approaches to parallelize the backward recursion step, which is the most computational intensive part of the LD mesh method. We perform ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999